Measuring the Efficacy of Percutaneous Cryoneurolysis in the Management of Patients With Plateaued or Refractory Shoulder Spasticity

Paul Winston,^{1,2} Mahdis Hashemi,² Eve Boissonnault,^{2,3} Daniel Vincent,¹ Fraser MacRae,^{2,4} Jia Song,⁵ Meng-Hsuan Sung,⁵ Sandy Shi⁵

¹The University of British Columbia, Vancouver, BC, Canada; ²Vancouver Island Health Authority, Victoria, BC, Canada; ³University of Montreal Health Center, Montreal, QC, Canada; ⁴Western University, London, ON, Canada; ⁵Pacira BioSciences, Inc., Tampa, FL, USA

DISCLOSURES

Paul Winston has received educational and research grants and acted on advisory boards and as a consultant for Pacira BioSciences, Inc.; AbbVie; Merz Therapeutics; and Ipsen. All of the relevant financial relationships listed have been mitigated.

Mahdis Hashemi has no relevant financial relationships with ineligible companies to disclose and no non-financial conflicts of interest relevant to this activity.

Eve Boissonnault has received educational grants from AbbVie and received honoraria, acted on advisory boards, and acted as a consultant for Pacira BioSciences, Inc.; AbbVie; Merz Therapeutics; and Ipsen. All of the relevant financial relationships listed have been mitigated.

Daniel Vincent has acted as a consultant for Pacira BioSciences, Inc. and received funding per session from Island Health. All of the relevant financial relationships listed have been mitigated.

Fraser MacRae has no relevant financial relationships with ineligible companies to disclose and no non-financial conflicts of interest relevant to this activity.

Jia Song, **Meng-Hsuan Sung**, and **Sandy Shi** are employees of Pacira BioSciences, Inc. and **Jia Song** and **Sandy Shi** own stock in the company. All of the relevant financial relationships listed have been mitigated.

Conventional treatments for spasticity are costly and have limited duration for some patients^{1,2}

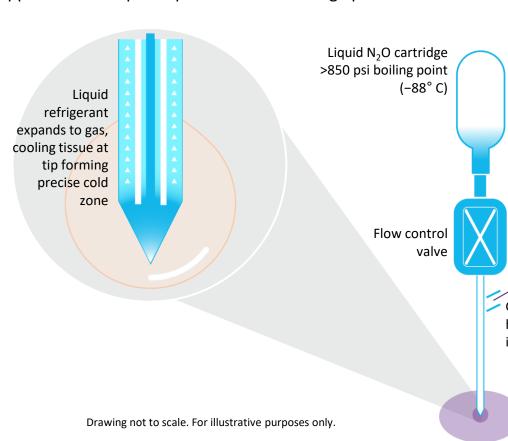
In the United States, the use of botulinum toxin to control shoulder girdle spasticity is off-label There is a need for novel treatment options to improve patient outcomes

The muscles most commonly targeted for management of shoulder spasticity include the pectoralis major and minor, subscapularis, and latissimus dorsi^{3,4}

The suprascapular nerve provides ~70% of sensory input to the shoulder³

Percutaneous cryoneurolysis is a minimally invasive technique that has been used to reduce pain associated with knee osteoarthritis,⁵ total knee arthroplasty surgery,⁶ and neuralgia⁷

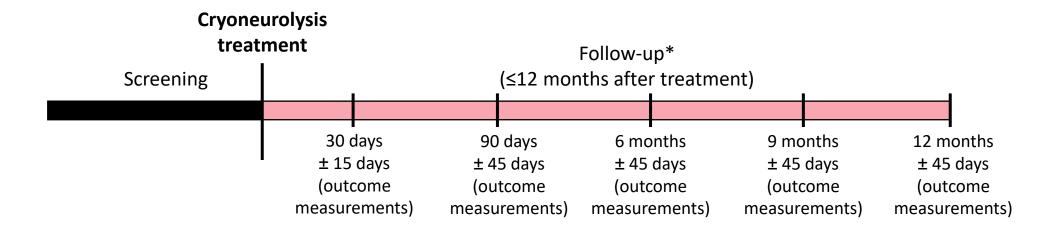
A previous case series suggested that cryoneurolysis may be a promising treatment for spasticity, but additional data are needed⁸


Objective: to evaluate the outcomes of cryoneurolysis in patients with spastic shoulder who had plateaued in prior treatments, including botulinum toxin therapy

^{1.} Orsnes GB et al. Acta Neurol Scand. 2000;101(4):244-248; 2. Ward A et al. J Rehabil Med. 2005;37(4):252-257;

^{3.} Fitterer JW et al. *Front Neurol*. 2021;12:668370; 4. Simpson DM et al. *PM R*. 2017;9(2):136-148; 5. Radnovich R et al. *Osteoarthritis Cartilage*. 2017;25(8):1247-1256; 6. Urban JA et al. *Arthroplast Today*. 2021;10:87-92; 7. Kim CH et al. *Pain Physician*. 2015;3:E363-E368; 8. Winston P et al. *Arch Rehabil Res Clin Transl*. 2019;1(3-4):100030.

Methods: Cryoneurolysis Procedure


- This repeated-measures pilot study (NCT04670783) included participants who underwent cryoneurolysis to the lateral and/or medial pectoral nerves
 - In some cases, neurolysis was applied to the suprascapular nerve to manage pain
- Probe cooled to between -60°C and -88°C near the targeted nerve¹⁻³
 - Cooling causes secondary axonotmesis and Wallerian degeneration, allowing for axonal regrowth⁴
- Effects can be prolonged for several months in some cases⁵

1. Rubenstein J et al. Am J Phys Med Rehabil. 2021;100(5):e65; 2. Winston P et al. Arch Rehabil Res Clin Transl. 2019;1(3-4):100030; 3. Shaffer JP et al. Orthop J Sports Med. 2022;10(5):23259671221096095; 4. Guirguis M et al. Cryotherapy. In: Deer TR et al, eds. Deer's Treatment of Pain. Springer Cham; 2019:283-289; 5. Radnovich R et al. Osteoarthritis Cartilage. 2017;25(8):1247-1256.

Methods: Study Design and Outcomes

Outcome	Measure [†]
Mean active ROM	ROM during abduction, external rotation, and flexion
MAS score	Muscle tone during abduction, external rotation, and flexion
V1	Maximal passive stretch during abduction, external rotation, and flexion
GAS	Patient satisfaction

Methods: Eligibility Criteria

Inclusion criteria

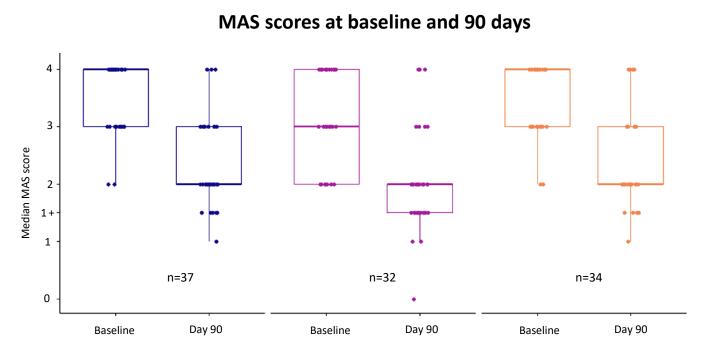
Adults with upper extremity spasticity causing functional impairment, who have plateaued in outcomes, in which the clinical examination suggested further interventions can be trialed

- Upon clinical examination, V1 measures on upper extremity demonstrated that further range may be possible (versus management of contracture)
- Reducible spasticity (versus contracture) in a diagnostic nerve block to determine whether cryoneurolysis would be beneficial
- Participants were offered a cryoneurolytic procedure and consented to undergo the procedure

Exclusion criteria

- Being unable to attend the treatment schedule
- Underwent prior neurolytic procedure to the nerve such as phenol or cryoneurolysis in the past 2 years

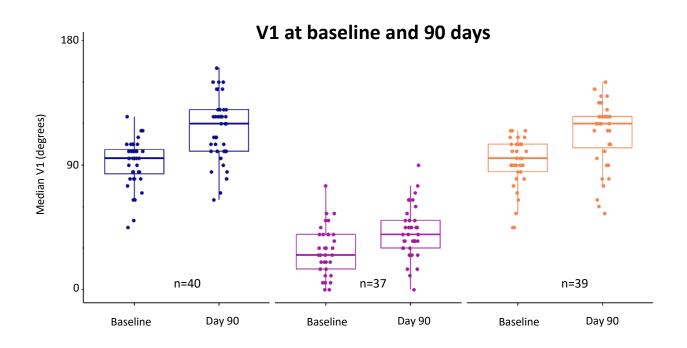
Results: Baseline Characteristics


participants underwent cryoneurolysis of the shoulder

At baseline, participants had reduced median active ROM and high median scores on MAS during abduction, external rotation, and flexion, suggesting severe spasticity with possible musculotendinous contracture

Outcome	Baseline (n=47)
Median active ROM (IQR)	
Abduction	60.0 (50.0, 70.0)
External rotation	20.0 (-11.2, 26.3)
Flexion	57.5 (40.0, 68.8)
Median MAS score (IQR)	
Abduction	4.0 (3.0, 4.0)
External rotation	3.0 (2.0, 4.0)
Flexion	4.0 (3.0, 4.0)
V1 (IQR)	
Abduction	95.0° (85.0°, 105.0°)
External rotation	30.0° (15.0°, 40.0°)
Flexion	95.0° (86.2°, 105.0°)

Results: 90-Day Changes From Baseline

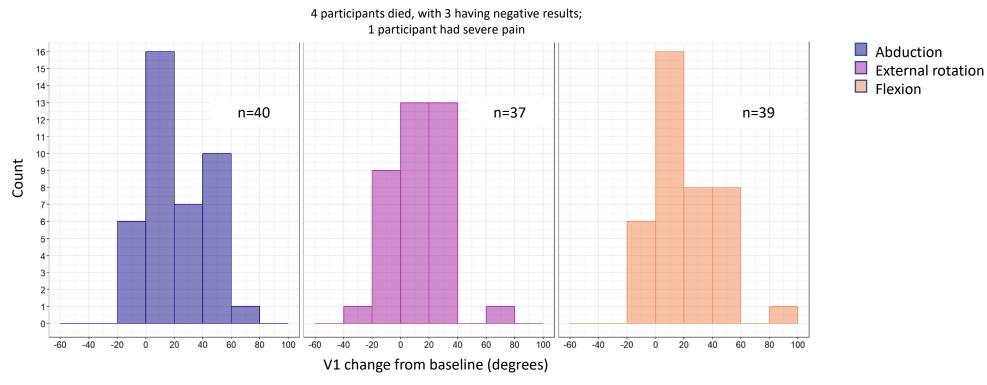

- 40 patients completed the 90-day follow-up at the time of this analysis
- Significant improvements were observed in MAS scores for abduction, external rotation, and flexion (P<0.001)

Outcome	90-day change (n=40)	P value
Median MAS scores (IQR)		
Abduction	-1.0 (-2.0, -1.0)	<0.001
External rotation	-1.0 (-2.0, -0.5)	<0.001
Flexion	-1.0 (-1.9, -1.0)	<0.001
AbductionExternal rotationFlexion		

Results: 90-Day Changes From Baseline (cont)

- Significant improvements were observed in V1 for abduction, external rotation, and flexion (P<0.0001)*
 - These changes resulted in a 3-dimensional change in ROM
- There was a numerical increase in mean improvement per patient in GAS scores at 90 days (10.5 points)

Outcome	90-day change (n=40)	<i>P</i> value
V1 (IQR)		
Abduction	20.0° (8.8°, 45.0°)	<0.001
External rotation	15.0° (0.0°, 35.0°)	<0.001
Flexion	20.0° (10.0°, 37.5°)	<0.001



^{*}Wilcox P value is reported.
GAS, goal attainment scale; IQR, interquartile range; ROM, range of motion; V1, maximal passive stretch.

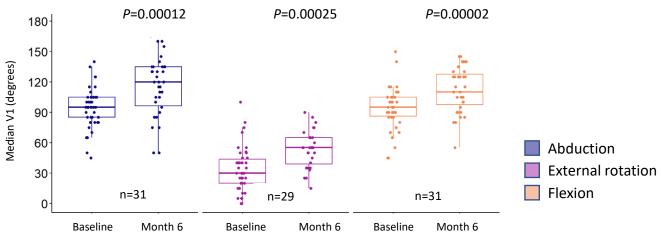
Results: 90-Day Changes From Baseline (cont)

• 44%, 38%, and 44% of participants experienced >20° improvements in V1 abduction, external rotation, and flexion scores at 90 days, respectively

Distribution of V1 changes from baseline at 90 days



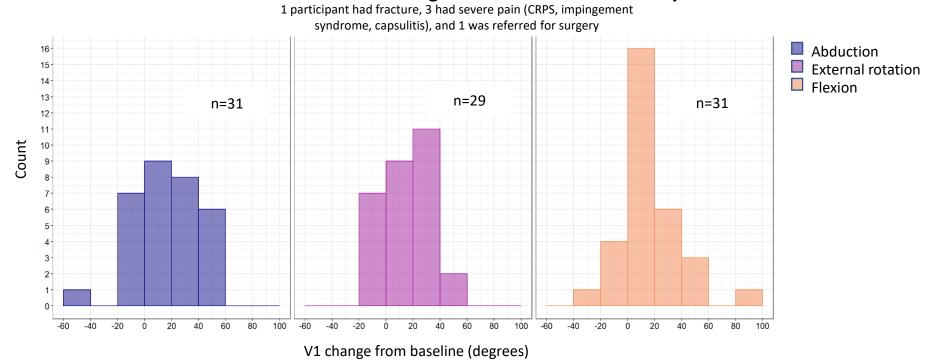
Results: 180-Day Changes From Baseline


- Improvements in MAS scores and V1* were sustained at the 6-month follow-up (P≤0.0003)
- There was a numerical increase in mean improvement per patient in GAS scores at 180 days (13.8 points)

Outcome	Median MAS scores (IQR)	Median V1 (IQR)
Abduction	-1.00 (-2.00, -1.00)	20.00° (2.50°, 37.50°)
External rotation	-1.00 (-1.50, -0.50)	15.00° (3.00°, 30.00°)
Flexion	-1.00 (-1.50, -0.88)	15.00° (5.00°, 35.00°)

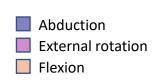
MAS scores at baseline and 180 days

V1 at baseline and 180 days

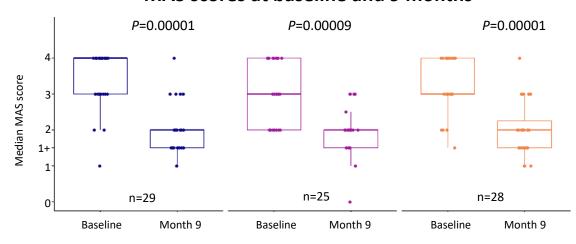


^{*}Wilcox *P* value is reported. IQR, interquartile range; MAS, modified Ashworth scale; V1, maximal passive stretch.

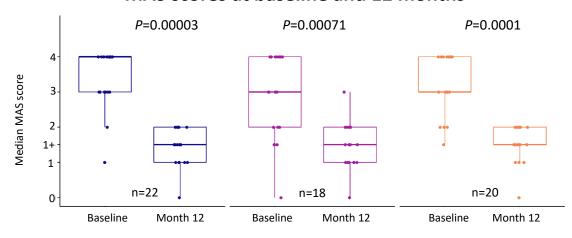
Results: 180-Day Changes From Baseline (cont)


- 45%, 45%, and 32% of participants experienced >20° improvements in V1 abduction, external rotation, and flexion scores at 6 months, respectively
 - 1 participant had a humerus fracture resulting in low abduction values (-60°)

Distribution of V1 changes from baseline at 180 days



Results: Changes From Baseline to 9 and 12 Months


- Participants with follow-up data at 9
 months and 12 months had sustained
 significant improvements in MAS scores at
 9 (P≤0.00009) and 12 months (P≤0.00071)
- Significant sustained improvements were also observed in V1 at 9 (P≤0.00028) and 12 months (P≤0.0013) across abduction, external rotation, and flexion measures*

MAS scores at baseline and 9 months

MAS scores at baseline and 12 months

Participants in the study had markedly reduced flexion, as well as abduction and external rotation, associated with increased tone, which classically indicated clinical presence of severe spasticity

Conclusions

- Percutaneous cryoneurolysis of the medial and lateral pectoral nerves and/or suprascapular nerve was associated with improvements in shoulder ROM, spastic tone, and clinically meaningful¹ improvements in GAS scores at 90 and 180 days¹
- Improvements in shoulder ROM and spastic tone were maintained at later time points; longer follow-up is ongoing to confirm sustainability of improvements

ACRM 100th Annual Conference

PROGRESS IN REHABILITATION RESEARCH

PRE-CON: 28 - 30 OCT

INTERDISCIPLINARY

ACRMconference.org

RESEARCH TO PRACTICE FASTER

BEHAVIORAL

HEALTH

TECHNOLOGY

REHABILITATION

DISEASES

Improving lives through interdisciplinary rehabilitation research

ACRM.org