Clinical and Health Economic Outcomes With and Without Liposomal Bupivacaine in Medicare-Insured Patients Undergoing Outpatient Shoulder Arthroplasty

Joseph A. Abboud,¹ Anand M. Murthi,² Kewei Wang,³ Priyanka Priyanka,³ Jennifer H. Lin,³ Gabriel Wong,³ Grant E. Garrigues⁴

¹Rothman Orthopaedic Institute, Philadelphia, PA; ²MedStar Union Memorial Hospital, Baltimore, MD; ³Pacira BioSciences, Inc, Brisbane, CA; ⁴Midwest Orthopaedics at Rush, Chicago, IL

OBJECTIVE

To evaluate the impact of liposomal bupivacaine (LB) on healthcare utilization and opioid use for up to 12 months following total shoulder arthroplasty (TSA)

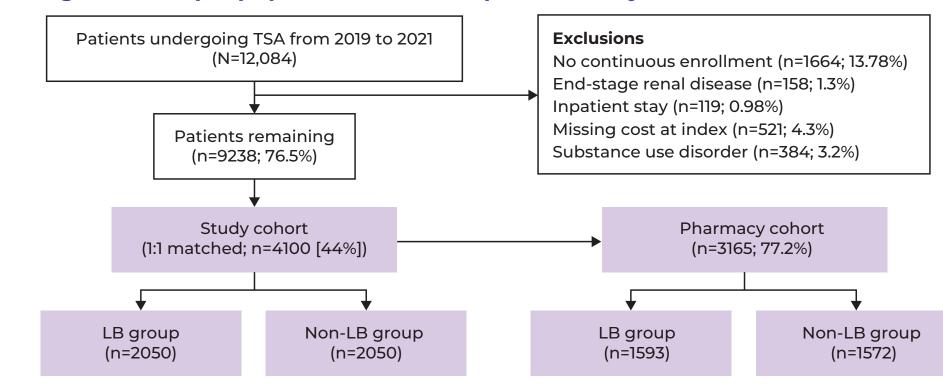
CONCLUSIONS

- Medicare-insured patients receiving LB for outpatient TSA had lower all-cause total healthcare costs over 1 year of follow-up and experienced lower opioid use 1 week following surgery compared with patients not receiving LB (non-LB), which may have been driven by more effective perioperative pain management
- 2 These findings support reduced cost and improved quality metrics in patients treated with LB versus non-LB analgesia for outpatient shoulder surgery

PRESENTING AUTHOR: Gabriel Wong; Gabriel.Wong@pacira.com

ACKNOWLEDGEMENTS: This study was funded by Pacira BioSciences, Inc. Assistance with poster preparation was provided under the authors' direction by Tochukwu Ozulumba, PhD, and David Boffa, ELS, of Fingerpaint Medical and funded by Pacira BioSciences, Inc.

REFERENCES: 1. Wagner et al. *J Shoulder Elbow Surg*. 2020;29(12):2601-2609. 2. Steinhaus et al. *J Orthop*. 2018;15(2):581-585. 3. Fisher et al. *J Am Acad Orthop Surg*. 2025;33(1):e1-e10. 4. Menendez et al. *J Shoulder Elbow Surg*. 2018;27(12):2113-2119. 5. Krupp et al. *Arch Orthop Trauma Surg*. 2023;143(4):1895-1902. 6. Lee et al. *J SES Int*. 2024;8(2):282-286. 7. EXPAREL (bupivacaine liposome injectable suspension) [US package insert]. Pacira BioSciences, Inc.; 2023. 8. Lee et al. *J ISAKOS*. 2024;9(1):9-15. 9. Jindia et al. *Surgeries*. 2022;3(1):64-70. 10. Pacira BioSciences, Inc. The NOPAIN Act. https://www.nopainpact.com. Accessed September 4, 2025.


INTRODUCTION

- TSA (anatomic and reverse) procedures have been increasingly performed in the United States in recent years, with >100,000 procedures estimated to be performed in 2025¹
- Performing TSA procedures in outpatient care settings is associated with reduced healthcare costs compared with performing these procedures in inpatient settings²
- Effective perioperative pain management is critical to enable shorter length of stay after TSA and avoid severe pain, which can lead to downstream healthcare resource utilization and costs^{3,4}
- A continuous indwelling catheter is one method for prolonged pain control after outpatient TSA, but it can have a high equipment cost and is associated with complications^{5,6}
- LB is a nonopioid treatment that has been found to be associated with reduced opioid consumption in patients undergoing TSA procedures⁷⁻⁹
- The NOPAIN Act has expanded reimbursement for qualifying nonopioid therapies, such as LB, when used for Medicare-insured patients undergoing outpatient procedures¹⁰
- However, data regarding LB use for outpatient TSA in Medicare-insured patients are limited

RESULTS

• Overall, 4100 patients were included in the analysis (LB, n=2050; non-LB, n=2050) (Figure 1)

Figure 1. Sample population for retrospective analysis.

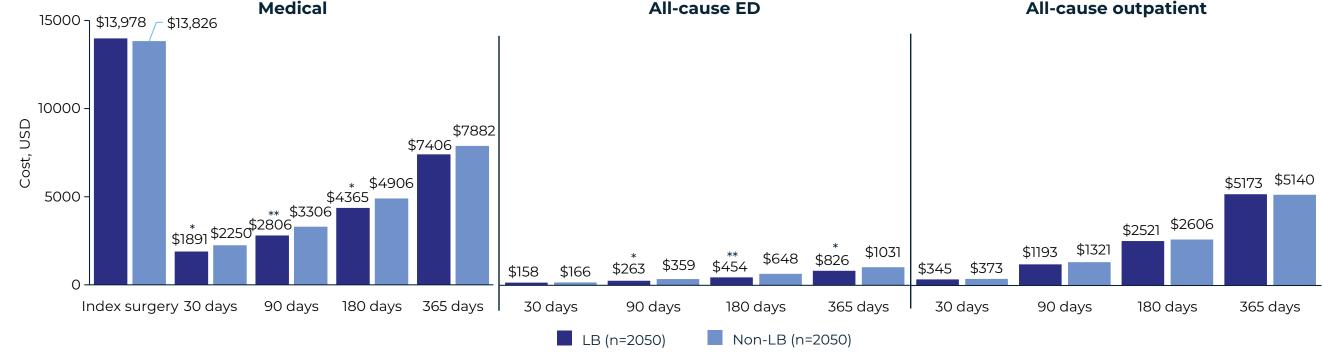
 $LB, liposomal\ bupiva caine; TSA, total\ shoulder\ arthroplasty.$

- After propensity score matching, patient characteristics were similar between groups (Table 1)
- The median age was ~74 years; most patients were female, White, and had a diagnosis of osteoarthritis
- ~16% of patients had prior opioid exposure; ~25% to 30% of patients had chronic pain or were obese, and ~15% to 17% of patients had anxiety, depression, or had smoked

Table 1. Baseline Demographic and Clinical Characteristics

	PS-matched LB (n=2050) ^a	PS-matched non-LB (n=2050) ^a	PS-matched standardized mean difference, %
Age, mean (SD), y	74.5 (6.1)	74.3 (6.1)	3.5
Sex	(/	(37)	
Female	1152 (56.2)	1118 (54.5)	-3.3
Male	898 (43.8)	932 (45.5)	3.3
Race	, ,	, ,	
White	1892 (92.3)	1917 (93.5)	-4.8
Non-White	158 (7.7)	133 (6.5)	4.8
Charlson Comorbidity Score, mean (SD)	0.6 (1.0)	0.6 (1.1)	1.8
Anxiety	334 (16.3)	343 (16.7)	-1.2
Chronic pain	625 (30.5)	638 (31.1)	-1.4
Depression	321 (15.7)	307 (15.0)	-1.9
Osteoarthritis	1926 (93.9)	1943 (94.8)	-3.6
Smoking	343 (16.7)	327 (15.9)	-2.1
Cancer	316 (15.4)	282 (13.8)	-4.7
Obesity	560 (27.3)	553 (27.0)	-0.8
Prior opioid exposure ^b	348 (17.0)	333 (16.2)	-2.0
Procedure year			
2019	36 (1.8)	32 (1.6)	1.5
2020	44 (2.2)	48 (2.3)	-1.3
2021	1970 (96.1)	1970 (96.1)	0.0
Region			
Northeast	214 (10.4)	228 (11.1)	-3.0
Midwest	530 (25.9)	557 (27.2)	2.2
South	935 (45.6)	777 (37.9)	15.7
West	371 (18.1)	488 (23.8)	-]4.]

- Although there was no difference in the cost on the day of surgery between the 2 groups, the LB group had lower total medical costs compared with the non-LB group during follow-up after surgery (Figure 2)
- Specifically, total medical costs were significantly lower in the LB group than the non-LB group over 30 days (\$359 reduction; rate ratio [95% confidence interval (CI)], 0.84 [0.73, 0.96]; P=0.011), 90 days (\$500 reduction; rate ratio [95% CI], 0.85 [0.77, 0.94]; P=0.002), and 180 days (\$541 reduction; rate ratio [95% CI], 0.89 [0.81, 0.98]; P=0.015) after surgery, and costs were numerically lower over 365 days after surgery (\$476 reduction; rate ratio [95% CI], 0.94 [0.86, 1.02]; P=0.159)
- Total medical cost savings were generally driven by lower ED and outpatient medical costs in the LB group versus the non-LB group
- Total all-cause ED costs were numerically lower in the LB group than the non-LB group over 30 days after surgery (\$8 reduction; rate ratio [95% CI], 0.95 [0.64, 1.42]; P=0.817) and were significantly lower over 90 days (\$96 reduction; rate ratio [95% CI], 0.73 [0.55, 0.97]; P=0.029), 180 days (\$194 reduction; rate ratio [95% CI], 0.70 [0.37, 0.88]; P=0.002), and 365 days (\$205 reduction; rate ratio [95% CI], 0.80 [0.67, 0.96]; P=0.014) after surgery
- Total all-cause outpatient medical costs were numerically lower in the LB group over 30 days (\$28 reduction),
 90 days (\$128 reduction), and 180 days (\$85 reduction) after surgery than the non-LB group
- Similar trends were observed in the subgroup of opioidnaive patients, with those in the LB group having lower medical costs at 30, 90, 180, and 365 days than the non-LB group due to lower all-cause ED and all-cause outpatient costs at 90, 180, and 365 days (Figure 3)
- The subgroup of opioid-experienced patients in the LB group had lower medical costs at each time point compared with the non-LB group, which was driven mostly by lower all-cause outpatient costs (Figure 4)
- For patients with opioid use after surgery, the LB group consumed significantly fewer opioids than the non-LB group in the first week (average 165 vs 183 MMEs; rate ratio [95% CI], 0.9 [0.8, 1.0]; *P*=0.01); for up to 90 days after surgery, there was numerically lower opioid consumption in the LB group than non-LB group
- Similar observations were observed for opioid-naive patients in the first week and 30 days after surgery
- For opioid-experienced patients, lower, albeit not statistically significant, opioid consumption was observed over 12 months of follow-up in the LB group compared with the non-LB group
- The overall rate of pain-related complications (ICD diagnosis code, M25.51X) over 6 months after surgery was comparable between the LB and non-LB groups; however, the subgroup of patients who were opioid experienced before surgery had 31% lower odds of pain-related complications over a year after surgery (52.3% in the LB group vs 61.3% in the non-LB group; odds ratio [95% CI], 0.69 [0.51-0.94]; *P*=0.0183) with event reduction persisting to 12 months


METHODS

- Adults undergoing a TSA procedure between January 2019 and December 2021 in a hospital outpatient department with continuous enrollment at least 6 months before surgery and 12 months after surgery were retrospectively identified from the Centers for Medicare & Medicaid Services (CMS) database
- Data for this study were extracted from the 20% Research Identifiable File Medicare Fee for Service (FFS) claims data (Parts A, B, D) and beneficiary enrollment/summary files under CMS Data Use Agreement (DUA) 70419
- The study cohort (Figure 1) was composed of patients who were divided into 2 groups on the basis of LB use during or after the TSA procedure; groups were generated with 1:1 propensity score matching between the LB and non-LB groups
 Opioid-related outcomes were assessed over 12 months of follow-up after the surgery visit in the pharmacy cohort and included opioid use in oral morphine
- milligram equivalents (MMEs) and prescription status (yes/no)

 Total medical cost of care was assessed in the study cohort on the basis of costs from outpatient, inpatient, emergency department (ED), and skilled nursing
- facility (SNF) visits

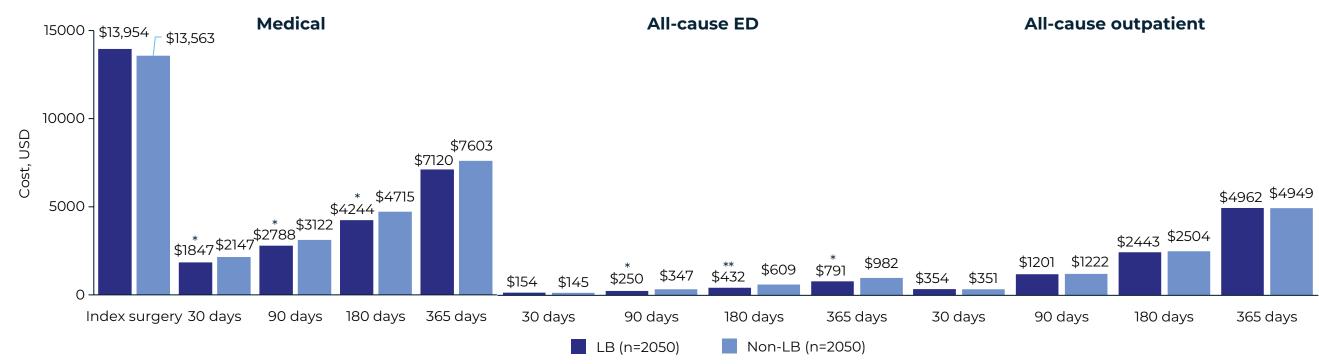

 Generalized linear regression modeling was performed with appropriate distributions including gamma distribution for healthcare costs. Tweedie distribution
- Generalized linear regression modeling was performed with appropriate distributions, including gamma distribution for healthcare costs, Tweedie distribution for opioid intake (MMEs), and binomial distribution for opioid filled status
- Subgroup analysis of outcomes was performed according to opioid exposure at baseline

Figure 2. Medical, all-cause ED, and all-cause outpatient cost comparisons between the LB and non-LB groups.

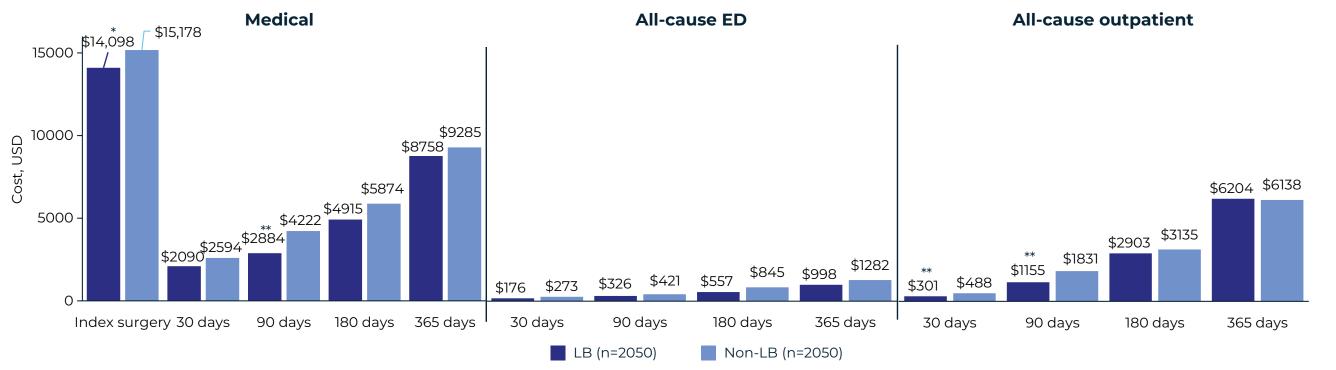

ED, emergency department; LB, liposomal bupivacaine. *P<0.05. **P<0.01.

Figure 3. Medical, all-cause ED, and all-cause outpatient cost comparisons between the LB and non-LB groups for opioid-naive patients.

ED, emergency department; LB, liposomal bupivacaine. *P<0.05. **P<0.01.

Figure 4. Medical, all-cause ED, and all-cause outpatient cost comparisons between the LB and non-LB groups for opioid-experienced patients.

ED, emergency department; LB, liposomal bupivacaine. *P<0.05. **P<0.01.